# 8.5. УЧЕТ НЕТОЧНОСТИ ПАРАМЕТРОВ В ЗАДАЧЕ АНАЛИЗА ИНВЕСТИЦИОННОГО ПРОЕКТА ПО ПРОИЗВОДСТВУ АВТОМОБИЛЕЙ

Романов Б.А., к.т.н., заведующий кафедрой математических дисциплин Московского бухгалтерского института

В статье выполнен учет неточности параметров в задаче анализа инвестиционного проекта по увеличению производства автомобилей. Неточности параметров рассматривается как случайные величины, распределенные на заданных отрезках. В качестве законов распределения используются равномерное и нормальное распределения. С целью выявления влияния отдельных параметров на результаты расчетов рассматриваются наряду с частными случаями неточности отдельных параметров также и общий случай неточности всех параметров. Рассчитываются математические ожидания и дисперсии выходных показателей инвестиционного проекта, такие как потребные производственные мощности всех предприятий, участвующих в проекте, максимальный выпуск автомобилей для нескольких вариантов увеличения производственных мощностей автосборочного предприятия и смежных предприятий, имеющих недостаточные производственные мощности с двумя видами распределения неточности исходных параметров. Кроме того, расчеты проведены для двух вариантов соотношения производственных мощностей предприятий, участвующих в реализации инвестиционного проекта - не сбалансированных производственных мощностях и частично сбалансированных. Выполнен также анализ полученных результатов.

В статье «Математическая модель реализации производственного проекта группой предприятий» [1] изложена модель расчета стоимости инвестиционного производственного проекта. В статье [2] приводится пример анализа проекта по расширению производства легковых автомобилей. В этой статье предполагается, что исходные параметры заданы точно. Однако на практике это едва ли возможно в силу ряда причин.

- Во-первых, исходные данные соответствуют уровню производства до реализации инвестиционного проекта. При изменении уровней производства на предприятиях, реализующих заданный проект параметры обычно также изменяются.
- Во-вторых, даже при непосредственном измерении этих параметров всегда существует погрешность их определения.

Поэтому представляет интерес учесть при анализе инвестиционного проекта неточность исходных параметров. Учет неточности (неопределенности) параметров изложен разделе 4.2 [1] в виде стохастической модели. В данной статье рассмотрим упрощенный вариант стохастической модели и выполним расчеты на примере анализа инвестиционного проекта, изложенного в [2].

Задача расчета максимального выпуска автомобилей формулируется так [2]:

$$x = Ax + \hat{y} + y \; ; \tag{1}$$

$$x \le p$$
; (2)

$$\hat{y} = qa$$
; (3)

$$a=e\hat{y}$$
; (4)

$$a \rightarrow max$$
, (5)

где

**х** – вектор валового выпуска продукции предприятий;

 $m{A}$  — матрица коэффициентов прямых материальных и других затрат на производство продукции размерности  $m{N}^*m{N}$ 

 N – число предприятий, включенных в реализацию заданного проекта;  у – вектор фиксированного выпуска конечной продукции предприятий;

- е вектор, состоящий из единиц;
- a общий объем производства легковых автомобилей;
- q вектор пропорций выпуска товаров предприятиями;
- р вектор производственных мощностей предприятий;
- $\hat{y}$  вектор выпуска конечной продукции.

В условиях данной задачи и ниже произведения векторов рассматриваются как скалярные, вектор-столбец умножается на матрицу справа. В данной задаче требуется рассчитать максимальный объем производства легковых автомобилей, определяемый величиной **а** при условиях и ограничениях (1)-(4).

Максимальное значение величины а будет равно:

$$maxa=mina_i, i=1,N,$$

где

$$a_{i} = \frac{[p - By]_{i}}{[Bq]_{i}}, i = \overline{1,N};$$
 (6)

**В** – матрица, обратная к матрице **А**.

Поскольку в проекте требуется найти максимум конечной продукции только автосборочного предприятия, то вектор q состоит из нулей, кроме элемента, соответствующего автосборочному предприятию, который равен единице. В [2] для решения поставленной задачи сначала требуется определить объемы валового выпуска предприятий при увеличении производства легковых автомобилей в 2, 4 и 10 раз. Требуемый валовой выпуск продукции предприятий, обозначаемый через  $x^t$ , рассчитывался по формуле:

$$x^{tr} = By. (7)$$

Рассмотрим влияние неточности исходных данных на вектор  $\mathbf{x}^t$ . Учет неточности параметров осуществляется в виде постановки этой задачи как стохастической. Это означает, что исходные параметры считаются случайными величинами, распределенными на некоторых заданных интервалах. Матрица  $\mathbf{B}$  является функцией матрицы  $\mathbf{A}$  (обратной матрицей), поэтому исходными случайными величинами будем считать элементы матрицы  $\mathbf{A}$ . Пусть элементы матрицы  $\mathbf{A}$  распределены на интервалах  $\left(\mathbf{a}_{ij}^-, \mathbf{a}_{ij}^+\right)$ ,  $i, j = \overline{1, N}$ , так что максимальное отклонение элементов матрицы  $\mathbf{A}$  от их математических ожиданий равно:

$$\Delta a_{ij} = \frac{a_{ij}^{\prime} - a_{ij}^{\prime}}{2} \ . \tag{8}$$

Пусть  $\overline{A}$  — матрица, составленная из математических ожиданий случайных элементов матрицы A. Обозначим случайную матрицу  $\Delta A = A - \overline{A}$ , которую будем считать центрированной. Тогда матрицу  $(E - A)^{-1}$  можно представить в виде:

$$(E-A)^{-1} = (E-\overline{A}-\Delta A)^{-1}$$
.

Если предположить, что интервалы случайных приращений матрицы A малы, то можно разложить матрицу  $(E-\overline{A}-\Delta A)^{-1}$  по малому параметру  $\Delta A$ . Разложение такого вида рассматривалось в [3]. Ограничиваясь тремя членами разложения, имеем:

$$B \cong \overline{B} + \overline{B} \triangle A \overline{B} + \overline{B} \triangle A \overline{B} \triangle A \overline{B}$$
,

где 
$$\overline{B} = (E - \overline{A})^{-1}$$
.

Подставляя разложение матрицы  ${\it B}$  в формулу (7), получаем

$$x^{tr} = \overline{B}y + \overline{B}\Delta A \overline{B}y + \overline{B}\Delta A \overline{B}\Delta A \overline{B}y$$
.

Вектор  $\mathbf{x}^t$  будет случайным, так как является функцией случайной матрицы  $\Delta \mathbf{A}$  и вектора  $\mathbf{y}$ , который также будем считать случайным. В стохастической постановке задачи обычно требуется найти числовые характеристики, такие как математическое ожидание, дисперсию и др. Полагая случайные величины  $\Delta \mathbf{A}$  и  $\mathbf{y}$  независимыми и используя теоремы о числовых характеристиках случайных величин [4], получим, что математическое ожидание случайной величины  $\mathbf{x}^t$ , обозначаемое через  $\mathbf{M}[\mathbf{x}^t]$ , будет равно:

$$M[x^{t'}] = BM[y] + BM[\Delta A]BM[y] + BM[\Delta AB\Delta A]BM[y],$$

**М**[ $\Delta A$ ] — математическое ожидание случайной величины  $\Delta A$ ;

M[y] — математическое ожидание случайной величины y .

В [3] показано, что

$$\begin{split} &\boldsymbol{M}\left[\boldsymbol{\Delta}\boldsymbol{A}\boldsymbol{\overline{B}}\boldsymbol{\Delta}\boldsymbol{A}\right] = \boldsymbol{M}\left[\sum_{k,l}\boldsymbol{\Delta}\boldsymbol{A}_{ik}\boldsymbol{\overline{B}}_{kl}\boldsymbol{\Delta}\boldsymbol{A}_{ik}\right] = \boldsymbol{M}\left[\boldsymbol{\Delta}\boldsymbol{A}_{ij}\boldsymbol{\overline{B}}ji\,\boldsymbol{\Delta}\boldsymbol{A}_{ij}\right] + \\ &+ \sum_{\substack{k,l\\k\neq j,l\neq i}}\boldsymbol{M}\left[\boldsymbol{\Delta}\boldsymbol{A}_{ik}\boldsymbol{\overline{B}}_{kl}\boldsymbol{\Delta}\boldsymbol{A}_{ik}\right] = \boldsymbol{\overline{B}}_{ji}\boldsymbol{D}\left[\boldsymbol{\Delta}\boldsymbol{A}_{ij}\right] = \boldsymbol{\overline{B}}^{T}\circ\boldsymbol{D}\left[\boldsymbol{\Delta}\boldsymbol{A}\right], \end{split}$$

где  $\circ$  – знак поэлементного произведения матриц  $\overline{\mathbf{B}}^{\mathsf{T}}$  и  $\mathbf{D}[\Delta \mathbf{A}]$ ;

 $\overline{B}^{T}$  – транспонированная матрица  $\overline{B}$ .

Поскольку случайная величина — матрица  $\Delta A$  центрированная, то  $M[\Delta A] = 0$ . Поэтому выражение для  $M[x^t]$  примет вид:

$$M[x^{tr}] = \overline{B}M[y] + \overline{B}(\overline{B}^{T} \circ D[\Delta A])\overline{B}M[y].$$

Из этой формулы видно, что математическое ожидание случайной величины  $oldsymbol{x}^{tr}$  равно его среднему детерминированному значению, обозначаемому через  $oldsymbol{x}^{tr}$ 

терминированному значению, обозначаемому через **х** плюс добавка, определяемая случайными величинами из ее состава:

$$M[x^{tr}] = \overline{x}^{tr} + \Delta M[x^{tr}], \qquad (9)$$

где 
$$\Delta M [x^{tr}] = \overline{B} (\overline{B}^{T} \circ D [\Delta A]) \overline{B} M [y]$$
.

Дисперсия случайной величины  $x^t$ , обозначаемая через  $D[x^t]$ , вычисляется по формуле:

$$D[x^{t'}] = M[x^{t'} - M[x^{t'}]]^{2} =$$

$$= M[\overline{B}y + \overline{B}\Delta A \overline{B}y + \overline{B}\Delta A \overline{B}\Delta A \overline{B}y - M[x^{t'}]]^{2} =$$

$$= M[\overline{B}y]^{2} + M[\overline{B}\Delta A \overline{B}y]^{2} + M[\overline{B}\Delta A \overline{B}\Delta A \overline{B}y]^{2} +$$

$$+ 2M[(\overline{B}y)(\overline{B}\Delta A \overline{B}y)] + 2M[(\overline{B}y)(\overline{B}\Delta A \overline{B}\Delta A \overline{B}y)] +$$

$$+ 2M[(\overline{B}\Delta A \overline{B}y)(\overline{B}\Delta A \overline{B}\Delta A \overline{B}y)] - 2M[M[x^{t'}](\overline{B}y)] -$$

$$- 2M[M[x^{t'}](\overline{B}\Delta A \overline{B}y)] - 2M[M[x^{t'}](\overline{B}\Delta A \overline{B}\Delta A \overline{B}y)].$$

Учитывая, что при вычислении слагаемых  $M[\overline{B}\Delta A\overline{B}\Delta A\overline{B}y]^2$  и  $M[(\overline{B}\Delta A\overline{B}y)(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)]$  требуется знать моменты матрицы  $\Delta A$  порядка выше второго, которыми ввиду малости пренебрежем, будем считать

$$M[\overline{B}\Delta A\overline{B}\Delta A\overline{B}y]^2 = 0$$
  $M[(\overline{B}\Delta A\overline{B}y)(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)] = 0$ .

Слагаемые  $M[(By)(B\Delta ABy)]$  и  $M[M[x^{tr}](B\Delta ABy)]$  также равно нулю ввиду присутствия в этих полиномах сомножителя  $M[\Delta A] = 0$ .

Окончательно получаем:

$$D[x^{t'}] = M[\overline{B}y]^{2} +$$

$$+ M[\overline{B}\Delta A\overline{B}y]^{2} + M[(\overline{B}y)(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)] -$$

$$- M[x^{t'}]M[\overline{B}y] - M[x^{t'}]M[\overline{B}\Delta A\overline{B}\Delta A\overline{B}y].$$

Поскольку

$$M[(\overline{B}y)(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)] = M[(\overline{B}y)M[(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)] =$$

$$= \overline{B}M[y]M[(\overline{B}\Delta A\overline{B}\Delta A\overline{B}y)],$$

то это слагаемое отличается от последнего сомножителями  $M[x^t]$  и  $\overline{B}M[y]$ . Ниже при вычислении числовых примеров будет показано, что величина  $\overline{B}(\overline{B}^T \circ D[\Delta A])\overline{B}M[y]$ , представляющая собой разницу между  $M[x^t]$  и  $\overline{B}M[y]$ , достаточно мала, поэтому ей можно пренебречь. Тогда окончательно получаем выражение для определения дисперсии:

$$D[x^{t'}] = M[\overline{B}y]^{2} + M[\overline{B}\Delta A\overline{B}y]^{2} - 2M[(x^{tr})^{2}] =$$

$$= M[\overline{B}y]^{2} + M[\overline{B}\Delta A\overline{B}y]^{2} - 2D[x^{t'}].$$

Отсюда получаем:

$$D[x^{tr}] = \frac{M[\overline{B}y]^2 + M[\overline{B}\Delta A\overline{B}y]^2}{3} =$$

$$= \frac{(\overline{B}^{\circ}\overline{B})D[y] + (\overline{B}^{\circ}\overline{B})D[\Delta A](\overline{B}^{\circ}\overline{B})D[y]}{3}.$$

Теперь представим слагаемые этого выражения в виде более наглядном для выполнения вычислений:

$$M[\overline{B}y]^{2} = M[\sum_{j} \overline{B}_{ij} y_{j} \sum_{j} \overline{B}_{ij} y_{j}] = \sum_{j} \overline{B}_{ij}^{2} D[y_{j}];$$

$$M[\overline{B}\Delta A \overline{B}y]^{2} =$$

$$= M[\sum_{j,k,l} \overline{B}_{ij} \Delta A_{jk} \overline{B}_{kl} y_{j} \sum_{j,k,l} \overline{B}_{ij} \Delta A_{jk} \overline{B}_{kl} y_{j}] =$$

$$= \sum_{j,k,l} \overline{B}_{ij}^{2} D[\Delta A_{jk}] \overline{B}_{kl}^{2} D[y_{j}].$$

При выводе этих формул предполагалось, что элементы матрицы  $\Delta A$  и компоненты вектора y не зависимы. В выражения для  $M[x^t]$  и  $D[x^t]$  входят величины  $D[\Delta A]$  и D[y], которые определяются функциями распределения случайных величин  $\Delta A$  и y. В качестве функций распределения случайных величин ниже будут рассматриваться 2 варианта: равномерное и нормальное распределения. Выбор этих распределений обусловлен следующими обстоятельствами. В данной модели неточность (неопределенность) информации имитируется случайной величиной на некотором интервале неточности значений параметра. Этот интервал определяется экспертно для каждого конкретного параметра.

Равномерное распределение означает полную неточность (неопределенность) параметра на заданном интервале. Нормальное распределение означает, что имеется статистически значимое множество экспертных оценок параметра, подчиненное нормальному закону распределения на некотором интервале (усеченное нормальное распределение). Дисперсия равномерного распределения определяется значениями отрезка, на котором оно укладывается, и равна квадрату длины отрезка деленному на 12. Дисперсию для нормального распределения определим так. Положим, что практически все нормальное усеченное распределение укладывается на заданном экспертно отрезке. Это означает, что отрезок приближенно равен 6 значениям корня квадратного из дисперсии, откуда и получаем значение дисперсии. Ниже будут приведены числовые примеры расчетов математического ожида-

ния и дисперсии случайной величины  $\mathbf{x}^t$  для этих вариантов распределений и различных числовых значений отрезков неточности.

Рассмотрим теперь влияние неточности исходных данных на решение задачи (1)-(5), т.е. будем рассматривать ее как стохастическую. При решении этой задачи максимальное значение величины  $\boldsymbol{a}$  также будет случайной величиной как функция от случайных величин — матрицы  $\boldsymbol{B}$ , вектора  $\boldsymbol{y}$  и вектора  $\boldsymbol{p}$ , которые также будем считать случайными. Найдем выражение для математического ожидания и дисперсии максимального значения величины  $\boldsymbol{a}$ .

Обозначим некоторую текущую величину максимального общего объема производства заданной конечной продукции через  $\boldsymbol{a}$ . Полагая, что все случайные параметры задачи независимы, получим, что величины  $\boldsymbol{a}_i$  из (6) также независимы и функцию распределения случайной величины  $\boldsymbol{a}$  можно записать в общем виде так [5]:

$$F(a)=1-\prod_{i=1}^{N}[1-F_{i}(a)],$$
 (10)

где  $F_i(a)$  — функция распределения случайной величины  $a_i$ .

Введем обозначения  $a_i^- = mina_i^-$ ,  $a_i^+ = maxa_i^-$ . Интервалы от  $a_i^-$  до  $a_i^+$  представляют собой отрезки, на которых может реализоваться некоторое случайное значение величины  $a_i$ . Упорядочим эти отрезки по возрастанию величин  $a_i^-$  и заново перенумеруем образовавшуюся последовательность отрезков. Если эти отрезки перекрывают друг друга, то интервал, начиная от  $mina_i^-$  до  $\textit{max}\,\textit{a}_{i}^{\scriptscriptstyle +}$ , представляет собой отрезок, на котором может реализоваться случайное значение величины а. Если для некоторого i значение  $a_i^-$  будет превосходить значение  $a_{i-1}^+$ , то отрезки, начиная с этого значения i, можно исключить из рассмотрения, поскольку эти отрезки будут отделены от отрезков первой группы интервалом, на котором случайное значение величины а не может реализоваться. Иными словами, полная группа событий реализуется только на отрезках первой группы.

Поскольку значения случайных величин  $a_i$ ,  $i=\overline{1,N}$  распределены на конечных интервалах, то функцию

распределения случайной величины а можно переписать так:

$$F(a)=1-\prod_{i=1}^{k}[1-F_{i}(a)]$$
 npu  $a_{k}^{-}\leq a< a_{k+1}^{-}$ ;

где m — индекс члена упорядоченной по возрастанию и соответственно перенумерованной последовательности  $\{a_i^-\}$ ,  $i=\overline{1,m+1}$ , причем

$$a_{m+1}^- = max\{a_i^+\}$$
.

Математическое ожидание и дисперсия случайной величины **а** вычисляются по формулам:

$$M[a] = \sum_{k=1}^{m} \int_{a\bar{k}}^{a\bar{k}+1} \frac{\partial F(a)}{\partial a} da;$$

$$D[a] = \sum_{k=1}^{m} \sum_{a\bar{k}}^{\bar{a}\bar{k}+1} (a-M[a])^2 \frac{\partial F(a)}{\partial a} da.$$

В подинтегральных выражениях величину  $\frac{\partial F(a)}{\partial a}da$ 

можно записать в виде dF(a). Тогда эти выражения можно представить в виде

$$M[a] = \sum_{k=1}^{m} \int_{a_{k-1}}^{a_{k+1}} adF(a);$$

$$D[a] = \sum_{k=1}^{m} \int_{a_{k}=1}^{a_{k+1}} (a - M[a])^{2} dF(a)$$
.

Из интегрального исчисления известно [6]:  $\int adF(a) = aF(a) - \int F(a)da$ .

Используя эту формулу, подставляя вместо F(a) его выражение из (10), получим:

$$M[a] = \sum_{k=1}^{m} a_{k+1}^{-1} [1 - \prod_{i=1}^{k} (1 - F_i(a_{k+1}^{-1}))] -$$

$$- \sum_{k=1}^{m} a_k^{-1} [1 - \prod_{i=1}^{k} (1 - F_i(a_k^{-1}))] + \sum_{k=1}^{m} \sum_{a_k^{-1}}^{a_{k+1}^{-1}} [1 - \prod_{i=1}^{k} (1 - F_i(a))] da;$$

$$D[a] = \sum_{k=1}^{m} (a_{k+1}^{-1} - M[a])^2 [1 - \prod_{i=1}^{k} (1 - F_i(a_{k+1}^{-1}))] -$$

$$- \sum_{k=1}^{m} (a_k^{-1} - M[a])^2 [1 - \prod_{i=1}^{k} (1 - F_i(a_k^{-1}))] -$$

$$- 2 \sum_{k=1}^{m} \sum_{a_k^{-1}}^{n} (a - M[a]) [1 - \prod_{i=1}^{k} (1 - F_i(a))] da.$$

Рассмотрим два частных случая решения задачи (1)-(5). В частном случае 1 m=1 и  $a_2^-=a_1^+$ . В частном случае 2 первые m (m>1) членов упорядоченной по возрастанию последовательности  $\{a_i^-\}$  равны между собой, т.е.  $a_1^-=a_1^-$ ,  $i=\overline{1,m}$  и, кроме того,  $a_{m+1}^-=a_1^+$ .

В частном случае 1 функция распределения принимает вид:

$$F(a)=F_1(a)$$
 npu  $a_1^- < a < a_1^+$ ;

1 πpu a≥a<sub>1</sub> ,

и в частном случае 2:

0 πpu a≤a;;

$$F(a)=1-[1-F_1(a)]^m$$
 npu  $a_1^- < a < a_1^+$ ;

1 при а≥а; .

Соответственно формулы математического ожидания и дисперсии случайной величины **а** в частном случае 1:

$$M[a] = a_1^+ F_1(a_1^+) - a_1^- F_1(a_1^-) + \int_{a_1^-}^{a_1^+} F_1(a) da;$$
 (11)

$$D[a] = (a_{i}^{+} - M[a])^{2} F_{i}(a_{i}^{+}) - (a_{i}^{-} - M[a])^{2} F_{i}(a_{i}^{-}) - 2 \int_{a_{i}^{-}}^{a_{i}^{+}} (a - M[a]) F_{i}(a) da$$
(12)

и в частном случае 2:

$$M[a] = a_1^+ (1 - F_1(a_1^-))^m -$$

$$-a_{1}^{-}(1-F_{1}(a_{1}^{+}))^{m}+\int_{a_{1}^{-}}^{a_{1}^{+}}(1-F_{1}(a))^{m}da; \qquad (13)$$

$$D[a] = (a_1^+ - M[a])^2 (1 - F_1(a_1^+))^m - (a_1^- - M[a])^2 (1 - F_1(a_1^-))^m -$$

$$-2\int_{a_{1}^{2}}^{a_{1}^{+}}(a-M[a])(1-F_{1}(a))^{m}da. \qquad (14)$$

Частный случай 1 соответствует такому состоянию, когда хотя бы одно ограничение задачи значительно разбалансировано по отношению к максимизации целевой функции, а разброс параметров так относительно мал, что интервалы первых двух упорядоченных по возрастанию отрезков величин  $a_i$ ,  $i=\overline{1,m}$  не пересекаются. Это означает, что интервал распределения величины a можно представить на числовой оси в виде первого отдельного интервала, который не пересекается с другими интервалами, что и отражено в приведенных выше формулах для математического ожидания и дисперсии величины.

Частный случай 2 решения задачи (1)-(5) соответствует такому состоянию, когда ограничения задачи приближенно сбалансированы по отношению к максимизации целевой функции. При этом разброс параметров таков, что интервалы величин  $a_i$ , i=1,m, соответствующие крайним значениям разброса параметров не сильно отличаются одно от другого. Это означает, что случайные значения величины а распределяются на интервале, который представляет собой наложение т интервалов, минимальные и максимальные значения, которых мало отличаются друг от друга. Поскольку интервалы примерно одинаковы, то в качестве расчетных значений берутся минимальное и максимальное значения первого интервала, что и отражено в приведенных выше формулах для математического ожидания и дисперсии величины а.

Для практических решений условия в частном случае 2 можно рассматривать приближенно. Критерием такого приближения могут служить отклонения математического ожидания величин  $a_i$ . Если математические ожидания случайных величин  $a_i$  с индексами  $i=\overline{1,m}$  приближенно равны между собой, то для того, чтобы этот слу-

чай можно было рассматривать как частный случай 2, необходимо, чтобы выполнялось соотношение:

$$\frac{M[a_i]-M[a_j]}{\overline{M}[a_i]} \leq \varepsilon; \quad i,j=\overline{1,m}; \quad i \neq j,$$

где

 $\varepsilon$  — число меньше 1, определяющее степень близости математических ожиданий случайных величин  $a_i$ ;

 $\overline{M}[a_i]$  — средняя величина математических ожиданий случайных величин  $a_i$ .

Функция распределения случайной величины  $\boldsymbol{a}$  зависит от вида функций распределения случайной величины  $\boldsymbol{a}_i$ , которые, в свою очередь, являются функ-

циями распределения случайных величин p, y и A

Рассмотрим сначала вариант, когда случайными являются только величины  $\boldsymbol{p}$  и  $\boldsymbol{y}$ . Пусть эти величины равномерно распределены на некоторых заданных интервалах, на концах которых они принимают значения:

$$(p_i^-,p_i^+), i=\overline{1,N};$$

$$(y_i^-,y_i^+), i=\overline{1,N}.$$

Тогда случайные величины  $a_i$  будут распределены на интервалах с границами  $(a_i^-, a_i^+)$  ,  $i = \overline{1,m}$  ,

где

$$a_{i}^{-}=a_{i}$$
 при  $p_{i}=p_{i}^{-}$ ,  $y_{i}=y_{i}^{-}$ ;

$$a_{i}^{+}=a_{i}$$
 при  $p_{i}=p_{i}^{+}$ ,  $y_{i}=y_{i}^{+}$ .

Величина  ${\it a_i}$  является функцией — суперпозицией случайных величин  ${\it p}$  и  ${\it y}$ . Согласно центральной предельной теореме, распределение суммы случайных величин, имеющих один и тот же закон распределения с одинаковыми математическими ожиданиями и дисперсиями, при неограниченном увеличении числа членов неограниченно приближается к нормальному.

Практически центральной предельной теоремой можно пользоваться и в тех случаях, когда математические ожидания и дисперсии входящих в сумму случайных величин различны, если эти величины сравнимы по своему разбросу, а число членов суммы достаточно велико. В случае композиции более чем 7-10 слагаемых в большинстве случаев уже можно пользоваться центральной предельной теоремой.

Положим, что эти условия выполняются. Тогда функцию распределения величины  $\boldsymbol{a}_i$  можно записать в виде:

$$F_i(a) = \frac{1}{\sigma_i \sqrt{2\pi}} \int_{-\infty}^{a} e^{\frac{(a-a)^2}{2\sigma_i^2}} da,$$

где (в соответствии с теоремами о числовых характеристиках)

$$\sigma_i^2 = \frac{\left[\sigma_p^2 + (B^\circ B)\sigma_y^2\right]_i}{\left[(B^\circ B)q^2\right]_i}, \ i = \overline{1,N};$$
 (15)

 $\sigma_P^2$  – дисперсия вектора p;

 $\sigma_{v}^{2}$  – дисперсия вектора y .

Если же случайные величины **р** и **у** распределены по нормальному закону, то закон распределения вели-

чины  $a_i$  также будет нормальным, отличаться будут только значения дисперсий векторов p и y.

Поскольку функция нормального распределения не выражается через элементарные функции, поэтому для вычисления значений этой функции используют специальные функции (интегралы вероятностей), для которых составлены таблицы, в частности интеграл вероятностей вида:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

Хотя при вычислении математического ожидания и дисперсии случайной величины a можно воспользоваться табличными значениями интеграла вероятностей, все же это при вычислениях на компьютере не очень удобно. Для практических целей можно получить приближенное представление этого интеграла, выражаемое через элементарные функции, если вместо интеграла вероятностей использовать близкую к нему логистическую функцию  $\Psi(x)$ . Для логистической функции и интеграла вероятностей вида

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

на всей числовой оси выполняется соотношение [7]:

$$|\Phi(x)-\Psi(1,7x)|<0.01;$$

$$\Psi(x) = \frac{e^x}{1 + e^x}$$

Учитывая, что

$$F(x) = \Phi\left(\frac{x - \overline{x}}{\sigma}\right)$$

и заменяя  $\Phi(x)$  на  $\Psi(1,7x)$  получим следующее выражение для функции распределения случайной величины  $a_i$ ,  $i=\overline{1,N}$ :

$$F_{i}(a) \cong \frac{exp\left(\frac{a-ai}{\sigma i}\right)}{exp\left(\frac{a-ai}{\sigma i}\right)+1},$$

где 
$$\overline{\sigma_i} = \frac{\sigma_i}{1,7}$$
 .

В частном случае 1 функция распределения имеет вид:

$$F_{1}(a) \cong \frac{\exp\left(\frac{a-\overline{a}_{1}}{\overline{\sigma}_{1}}\right)}{\exp\left(\frac{a-\overline{a}_{1}}{\overline{\sigma}_{1}}\right)+1}.$$

Учитывая, что  $F_1(a_1^+)=1$  и  $F_1(a_1^-)=0$  и взяв интеграл в формуле для математического ожидания (11), получаем:

$$M[a] = a_i^+ + \frac{\Delta a_i}{2} \,. \tag{16}$$

При взятии интеграла учтено, что

$$a_1 = \frac{a_1^+ + a_1^-}{2}$$

И

$$\Delta a_1 = a_1^+ - a_1^-$$
.

Формула для дисперсии будет такой:

$$D[a] = (a_1^+ - M[a])^2 +$$

$$+M[a]\Delta a_{1}-2\int_{a_{1}^{2}}^{a_{1}^{+}}a\frac{\exp\left(\frac{a-a_{1}}{\overline{\sigma}_{1}}\right)}{\exp\left(\frac{a-a_{1}}{\overline{\sigma}_{1}}\right)}+1$$
(17)

Во 2-м частном случае получаем следующее выражение для математического ожидания величины *а*:

$$M[a] = a_1^{+} + \int_{a_1^{-}}^{a_1^{+}} \frac{1}{\left[1 + \exp\left(\frac{a - a_1}{\sigma_1}\right)\right]^3} da .$$
 (18)

Интеграл с помощью подстановки можно преобразовать в интеграл от рационального выражения:

$$\int_{a_{\overline{I}}}^{a_{\overline{I}}^{\dagger}} \frac{1}{\left[1 + \exp\left(\frac{a - \overline{a}_{1}}{\overline{\sigma}_{1}}\right)\right]^{3}} da =$$

$$= -\frac{a_{1}^{\dagger}}{\sigma_{1}^{\dagger}} \frac{d\left[\exp\left(\frac{a - \overline{a}_{1}}{\overline{\sigma}_{1}}\right)\right]}{\exp\left(\frac{a - \overline{a}_{1}}{\overline{\sigma}_{1}}\right)\left[1 + \exp\left(\frac{a - \overline{a}_{1}}{\overline{\sigma}_{1}}\right)\right]^{3}} = -\frac{a_{1}^{\dagger}}{\sigma_{1}^{\dagger}} \frac{dx}{x\left[1 + x\right]^{3}},$$
где  $x = \exp\left(\frac{a - \overline{a}_{1}}{\overline{\sigma}_{1}}\right).$ 

Последний интеграл можно взять посредством представления подинтегрального выражения в виде простых дробей:

$$\int_{a_{1}}^{a_{1}^{+}} \frac{dx}{x[1+x]^{3}} = \int_{a_{1}}^{a_{1}^{+}} \left[ \frac{1}{x} - \frac{1}{1+x} - \frac{1}{(1+x)^{2}} - \frac{1}{(1+x)^{3}} \right] dx =$$

$$= \frac{\Delta a_{1}}{2\sigma_{1}} + \frac{1 - \exp\frac{\Delta a_{1}}{2\sigma_{1}}}{1 + \exp\frac{\Delta a_{1}}{2\sigma_{1}}} + \frac{1 - \exp\frac{\Delta a_{1}}{\sigma_{1}}}{2\left[1 + \exp\frac{\Delta a_{1}}{2\sigma_{1}}\right]^{2}}.$$
(19)

Аналогично получаем выражение для дисперсии величины **a**:

$$D[a] = (a_1^+ - M[a])^2 - 2 \int_{a_1^-}^{a_1^+} \frac{a - M[a]}{\left[\exp\left(\frac{a - a_1}{\sigma_1}\right) + 1\right]^3} da . \quad (20)$$

Рассмотрим теперь вариант, когда в стохастической задаче (1)-(5) случайными величинами наряду с  $\boldsymbol{p}$  и  $\boldsymbol{y}$  являются элементы матрицы  $\boldsymbol{A}$ . Используя разложение матрицы  $\boldsymbol{B}$  в виде (8) и подставляя его в (6), получаем после преобразований выражение для случайной величины  $\boldsymbol{a}_i$ ,  $\boldsymbol{i} = \overline{\mathbf{1,N}}$ :

$$a_{i} = \frac{(p - \overline{B}y - \overline{B}\Delta A \overline{B}y - \overline{B}\Delta A \overline{B}\Delta A \overline{B}y)_{i}}{\left\{1 + \frac{\{[\overline{B}\Delta A + (\overline{B}\Delta A)^{2}]\overline{B}q\}_{i}}{(\overline{B}q)_{i}}\right\}(\overline{B}q)_{i}}.$$

Поскольку элементы матрицы  $\overline{[B}\Delta A + (\overline{B}\Delta A)^2]$  — малые величины, то сомножитель

$$\frac{1}{1 + \frac{\{[\overline{B}\Delta A + (\overline{B}\Delta A)^2]\overline{B}q\}_i}{(\overline{B}q)_i}}$$

можно разложить в ряд по малому параметру. Ограничиваясь двумя членами разложения, получим

$$\frac{1}{1+\frac{\{\overline{[B}\Delta A+(\overline{B}\Delta A)^2]\overline{B}q\}_i}{(\overline{B}q)_i}} \cong 1-\frac{\{\overline{[B}\Delta A+(\overline{B}\Delta A)^2]\overline{B}q\}_i}{(\overline{B}q)_i}.$$

Подставляя это разложение в выражение для  $a_i$ ,  $i = \overline{1,N}$ , после преобразований получим:

$$a_{i} = \frac{(P - \overline{B}y - \overline{B}\Delta A \overline{B}y - \overline{B}\Delta A \overline{B}\Delta A \overline{B}y)_{i}}{(\overline{B}q)_{i}} *$$

$$* \left\{ 1 - \frac{\{\overline{[B}\Delta A + (\overline{B}\Delta A)^{2}]\overline{B}q\}_{i}}{(\overline{B}q)_{i}} \right\}.$$

При выполнении преобразований пренебрежем членами, включающими моменты 3-го и 4-го порядка для случайной матрицы  $\Delta A$ . Кроме того, учтем, что числитель в фигурных скобках представляет собой малую величину. Поэтому математическое ожидание от слагаемых, включающих матрицы  $\Delta A$ , равно нулю и, как будет видно из дальнейшего, ими можно также пренебречь. В результате после выполнения преобразований выражение для случайной величины  $a_i$ ,  $i=\overline{1,N}$  можно записать в виде:

$$\mathbf{a}_i = \mathbf{a}_{iP} - \mathbf{a}_{iA}$$
 , где 
$$\mathbf{a}_{iP} = \frac{(p - \overline{B}y)_i}{(\overline{B}q)_i} \; ;$$

$$a_{iA} = \frac{[\overline{B}\Delta A \overline{B}y + \overline{B}\Delta A \overline{B}\Delta A \overline{B}y]_{i}}{(\overline{B}q)_{i}}.$$

Как видно из этого выражения, функция случайной величины  $a_i$ ,  $i=\overline{1,N}$  от случайных параметров в данной стохастической задаче сводится к функции этой величины в задаче с детерминированной матрицей A с учетом поправочного члена, обусловленного случайным характером элементов матрицы A.

Таким образом, в этом варианте комбинации случайных параметров величины  $\mathbf{a}_i$ ,  $\mathbf{i} = \overline{\mathbf{1,N}}$  представляют собой разность случайных величин  $\mathbf{a}_{i_P}$  и  $\mathbf{a}_{i_A}$ . Случайная величина  $\mathbf{a}_{i_A}$  представляет собой сумму слагаемых, включающих элементы матрицы отклонений от средних значений коэффициентов прямых затрат и компоненты вектора фиксированного выпуска конечной продукции.

Предположим, что слагаемые случайной величины  $a_{iA}$  сравнимы по порядку своего влияния на рассеивание суммы и число слагаемых достаточно велико для того, чтобы закон распределения случайной величины  $a_{iA}$ 

был приближенно нормальным. Тогда плотность распределения случайной величины  $a_{ia}$  записывается в виде:

$$f(a_{iA}) = \frac{1}{\sigma_{iA}\sqrt{2\pi}} \exp\left[-\frac{(a_{iA} - \overline{a_{iA}})^2}{2\sigma_{iA}^2}\right],$$

ΓД€

$$\overline{a}_{iA} = \frac{\{\overline{B}(\overline{B}^{T} \circ D[\Delta A])\overline{B}M[y]\}_{i}}{(\overline{B}q)_{i}};$$

$$\sigma_{iA}^{2} = \frac{\{(\overline{B} \circ \overline{B})D[\Delta A](\overline{B} \circ \overline{B})D[y]\}_{i}}{(\overline{B}q)_{i}^{2}};$$

 $\overline{{m B}}^{{\scriptscriptstyle T}}$  – транспонированная матрица  $\overline{{m B}}$ ;

 $\overline{B}^{T} \circ D[\Delta A]$  — поэлементное произведение матриц  $\overline{B}^{T}$  и  $D[\Delta A]$  .

При выведении математического ожидания и дисперсии поправочного члена учтено, что поскольку по определению случайная величина **ДА** центрированная, то

$$M[\overline{B}\Delta A]=0$$

и, как показано в [3],  $M[\Delta A\overline{B}\Delta A] = \overline{B}^T \circ D[\Delta A]$  и  $D[\overline{B}\Delta A] = (\overline{B} \circ \overline{B})D[\Delta A]$ , а также опущены моменты порядка более 2-го.

Выше было показано, что случайная величина  $a_{ip}$  распределена по нормальному закону. Плотность распределения запишем в виде:

$$f(a_{iP}) = \frac{1}{\sigma_{iP}\sqrt{2\pi}} \exp \left[ -\frac{(a_{iP} - a_{iP})^2}{2\sigma_{iP}^2} \right],$$

где 
$$a_{iP} = \frac{(p - \overline{By})_i}{(\overline{Bq})_i}$$
 ,  $p = \frac{p^+ + p^-}{2}$  и  $y = \frac{y^+ + y^-}{2}$ .

Плотность распределения случайной величины  $a_i$ ,  $i = \overline{1,N}$  как разности случайных величин  $a_i = a_{iP} - a_{iA}$ , распределенных по нормальному закону, также является нормальной и имеет вид:

$$f(a_{i}) = \frac{1}{\sqrt{2\pi(\sigma_{ip}^{2} + \sigma_{ip}^{2})}} \exp \left[ -\frac{[a_{i} - (a_{ip} - a_{iA})^{2}]^{2}}{2\sigma_{ip}^{2}} \right].$$

В частных случаях 1 и 2 эта плотность записывается

$$f(a_1) = \frac{1}{\sqrt{2\pi(\sigma_{ip}^2 + \sigma_{ip}^2)}} \exp \left[ -\frac{[a_1 - (a_{1p} - a_{1A})]^2}{2(\sigma_{1p}^2 + \sigma_{1A}^2)} \right].$$

Обозначим

$$- a_1 = a_{1P} - a_{1A}$$

$$M = \sigma_1^2 + \sigma_{10}^2 + \sigma_{10}^2. \tag{21}$$

Тогда приходим к такому же виду плотности распределения, как и в случае, когда случайными являются только величины  $\boldsymbol{p}$  и  $\boldsymbol{y}$ . Формулы математического ожидания и дисперсии для частных случаев 1 и 2, когда случайными являются величины  $\boldsymbol{p}$ ,  $\boldsymbol{y}$  и  $\boldsymbol{A}$  также выводятся из общих формул (11)-(14), используя вместо функции распределения нормальной плотности логистическую функцию. Учитывая, что  $\boldsymbol{F}_1(\boldsymbol{a}_1^+)=1$  и  $\boldsymbol{F}_1(\boldsymbol{a}_1^-)=0$  и взяв интеграл в формуле для математического ожидания (11), получаем:

$$M[a]=a_1^++\sigma 1^*$$

Для дисперсии получаем следующую формулу:

$$D[a] = (a_1^+ - M[a])^2 + 2M[a] \overline{\sigma}_1^*$$

$$*\left\{In\left[\exp\left(\frac{a_1^+ - \overline{a}_1}{\overline{\sigma}_1}\right) + 1\right] - In\left[\exp\left(\frac{a_1^- - \overline{a}_1}{\overline{\sigma}_1}\right) + 1\right]\right\} -$$

$$-2\int_{a_{1}^{-}}^{a_{1}^{+}} a \frac{\exp\left(\frac{a-a_{1}}{\sigma_{1}}\right)}{\exp\left(\frac{a-a_{1}}{\sigma_{1}}\right)+1} da.$$

В частном случае 2 формулы для математического ожидания и дисперсии имеют тот же вид (18) и (20), что и в случае, когда случайными являются только величины p и y с тем отличием, что величины  $a_1$  и  $a_2$  вычисляются по формулам (21).

Рассмотрим теперь примеры учета неточности параметров при анализе инвестиционного проекта [2]. Этот проект заключается в том, что автосборочное предприятие, выпускающее 50 тыс. легковых автомобилей в год, рассматривает возможности по увеличению производства, включающие три варианта (по отношению к начпльному значению, т.е к 0):

- увеличение производства в 2 раза;
- увеличение производства в 4 раза;
- увеличение производства в 10 раз.

Для обеспечения расчетов информацией автосборочное предприятие проводит сбор данных о собственном предприятии и смежных предприятиях, выполняющих поставки материалов, запасных частей и комплектующих узлов и деталей. В число этих данных входят:

- перечень смежных предприятий, поставляющих автосборочному предприятию свою продукцию;
- производственные мощности собственного предприятия и смежных предприятий:
- объемы поставок продукции смежных предприятий на автосборочное предприятие;
- затраты продукции смежных предприятий, приходящиеся на один автомобиль, выпускаемый автопредприятием.

на один автомосить, выпускаемый автопредприятием.
Перечень предприятий, участвующих в производстве автомобилей:

- 1. Предприятие по производству приборов.
- 2. Автосборочное предприятие.
- 3. Предприятие по производству двигателей.
- 4. Предприятие по производству проката.
- Предприятие по производству резинотехнических изделий.
   Предприятия по электроснабжению, водо- и газоснабжению.

Для краткости в приводимых ниже таблицах предприятия, участвующие в реализации производственного проекта, обозначаются порядковыми номерами из указанного выше перечня. Данные о производстве продукции приводятся в стоимостных единицах (рублях). Все приведенные ниже данные условные. Коэффициенты прямых затрат продукции предприятий, участвующих в проекте, представлены в табл. 1.

Таблица 1

#### МАТРИЦА А. КОЭФФИЦИЕНТЫ ПРЯМЫХ ЗАТРАТ

| 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 0,209195 | 0,043131 | 0,016226 | 0,002378 | 0,007204 | 0,039843 |
| 0,021689 | 0,224980 | 0,020565 | 0,011217 | 0,023996 | 0,040242 |
| 0,025733 | 0,078656 | 0,162535 | 0,059694 | 0,115077 | 0,048657 |
| 0,024284 | 0,093403 | 0,087092 | 0,310624 | 0,280188 | 0,052209 |
| 0,003886 | 0,011053 | 0,006614 | 0,030768 | 0,360330 | 0,110894 |
| 0,008388 | 0,012877 | 0,012104 | 0,030621 | 0,118094 | 0,245430 |

Векторы выпуска конечной продукции предприятий при указанных выше вариантах увеличения производства автомобилей были рассчитаны в [2] и приведены в табл. 2.

Таблица 2

### ВЫПУСК КОНЕЧНОЙ ПРОДУКЦИИ ПРЕД-ИЙ У

Тыс. руб.

| Увелич.<br>выпуска | 1      | 2       | 3      | 4      | 5       | 6       |
|--------------------|--------|---------|--------|--------|---------|---------|
| 0                  | 29 256 | 55 753  | 33 624 | 21 098 | 255 588 | 336 297 |
| 2                  | 29 256 | 153 495 | 33 624 | 21 098 | 255 588 | 336 297 |
| 4                  | 29 256 | 207 218 | 33 624 | 21 098 | 255 588 | 336 297 |
| 10                 | 29 256 | 560 256 | 33 624 | 21 098 | 255 588 | 336 297 |

Требуемый для обеспечения выпуска этой конечной продукции валовой выпуск продукции предприятий также рассчитан в [2] и приведен в табл. 3.

Таблица 3

### ТРЕБУЕМЫЙ ВАЛОВОЙ ВЫПУСК $x^{t}$

Тыс. руб.

|                    |        |         |        |         |         | i Bio. pyo. |
|--------------------|--------|---------|--------|---------|---------|-------------|
| Увелич.<br>выпучка | 1      | 2       | 3      | 4       | 5       | 6           |
| 0                  | 53 306 | 109 025 | 65 208 | 87 238  | 555 018 | 546 118     |
| 2                  | 57 152 | 236 381 | 68 933 | 90 411  | 563 506 | 554 820     |
| 4                  | 59 265 | 306 380 | 70 980 | 92 155  | 568 171 | 559 603     |
| 10                 | 73 155 | 766 381 | 84 433 | 103 617 | 598 827 | 591 034     |

Таблица 4

### **МАТРИЦА В. ОБРАТНАЯ МАТРИЦЕ А**

| 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 1,269094 | 0,077213 | 0,029411 | 0,013682 | 0,043305 | 0,080336 |
| 0,039344 | 1,302977 | 0,038107 | 0,032467 | 0,086835 | 0,89032  |
| 0,050617 | 0,148469 | 1,216515 | 0,128009 | 0,307477 | 0,143080 |
| 0,064328 | 0,218230 | 0,173377 | 1,513429 | 0,747465 | 0,240780 |
| 0,015585 | 0,042110 | 0,027267 | 0,088284 | 1,655575 | 0,254244 |
| 0,020641 | 0,040922 | 0,031794 | 0,077992 | 0,296334 | 1,379527 |

Положим, что значения элементов вектора у и матрицы

 $m{A}$  распределены случайно на конечных отрезках, равных удвоенному значению их среднего отклонения, рассчитываемому по формуле (8). Математическое ожидание требуемого валового выпуска продукции предприятий по формуле (9) состоит из двух слагаемых: детерминированного значения и добавки, определяемой случайным характером значений матрицы  $m{A}$  и вектора выпуска конечной продукции  $m{y}$ . Вычислим эту добавку  $m{\Delta M[x^t]}$ . Для ее вычисления требуется знать матрицу дисперсий отрезков распределения вектора  $m{y}$  и матрицы  $m{A}$ . Вычисления проведены для двух вариантов распределения значений на отрезках вектора  $m{y}$  и матрицы  $m{A}$  — равномерного и нормального. При равномерном распределении дисперсия равна квадрату длины отрезка, деленной на 12, а для нормального на 36. Были проведены несколько вариантов

расчета величины  $\Delta M[x^{tr}]$  для различных значений отрезков вектора y и матрицы A, в частности, равных 30% и 15% от детерминированных значений. Результаты расчетов  $\Delta M[x^{tr}]$  для отрезков вектора y и матрицы A, равных 30% и равномерного распределения приведены в

Таблица 5

### РЕЗУЛЬТАТЫ РАСЧЕТА $\Delta M [x^{tr}]$ ; ОТРЕЗКИ ДА И ДУ 30% ОТ СРЕДНИХ ЗНАЧЕНИЙ (равномерное распределение)

Тыс. руб.

| увелич.<br>выпуска | 1     | 2      | 3      | 4      | 5       | 6       |
|--------------------|-------|--------|--------|--------|---------|---------|
| 0                  | 7,025 | 13,928 | 10,821 | 26.545 | 100,858 | 469,529 |
| 2                  | 7,137 | 14,149 | 10,993 | 26.967 | 102,466 | 477,011 |
| 4                  | 7,198 | 14,271 | 11,088 | 27,200 | 103,349 | 481,123 |
| 10                 | 7,603 | 15,073 | 11,711 | 28,728 | 109,154 | 508,147 |

Из табл. 5 видно, что добавка  $\Delta M[x^{tr}]$  составляет незначительную величину. Расчеты также показали, что при уменьшении отрезков неточности значений элементов матрицы А и вектора выпуска конечной продукции у от 30% до нуля эта добавка далее уменьшается. Это показывает, что распределение вектора требуемого выпуска практически не смещенное. Поэтому можно считать, что случайный характер значений элементов матрицы 🗚 и вектора выпуска конечной продукции у практически не влияет на значение математического ожидания требуемого валового выпуска продукции предприятий.

Для выявления характера распределения вектора  $\mathbf{x}^{tr}$  рассчитана его дисперсия  $\mathbf{D}[\mathbf{x}^{tr}]$ , которая, собственно, и определяет неточность вектора  ${\pmb x}^{tr}$  . В табл. 6-7 показаны величины  $\sigma^{t} = \sqrt{D[x^{t}]}$  при отрезках разброса параметров вектора y и матрицы A, равных 20% от детерминированных значений.

Таблица 6

### РЕЗУЛЬТАТЫ РАСЧЕТА ДИСПЕРСИИ $\sigma^{t}$ ; ОТРЕЗКИ ДА И ДУ 20% ОТ СРЕДНИХ ЗНАЧЕНИЙ (равномерное распределение)

Тыс. руб. Увелич. 1 2 3 4 5 6 выпуска 0 1 270 2 502 1 436 1 579 14 515 15 622 1 284 6 697 1 447 1 587 14 521 15 628 14 527 15 633 1 297 9 023 1 458 1 594 10 1 466 24 345 1601 1 691 14 605 | 15 709

Таблица 7

### РЕЗУЛЬТАТЫ РАСЧЕТА ДИСПЕРСИИ $\sigma^{t}$ ; ОТРЕЗКИ ДА И ДУ 20% ОТ СРЕДНИХ ЗНАЧЕНИЙ (нормальное распределение)

|                    |     |        |     |     |       | Тыс. руб. |
|--------------------|-----|--------|-----|-----|-------|-----------|
| Увелич.<br>выпуска | 1   | 2      | 3   | 4   | 5     | 6         |
| 0                  | 733 | 1 445  | 829 | 911 | 8 377 | 9 0 1 8   |
| 2                  | 741 | 3 866  | 835 | 915 | 8 380 | 9 021     |
| 4                  | 749 | 5 209  | 842 | 919 | 8 383 | 9 024     |
| 10                 | 846 | 14 054 | 924 | 975 | 8 428 | 9 068     |

Из табл. 6 и 7 видно, что дисперсия величины  $x^{tr}$  значительно уменьшается для нормального распределения исходных параметров. Поскольку функция случайной величины  $\mathbf{x}^{tr}$  представляет собой композицию многих слагаемых, сравнимых по своему рассеиванию, то согласно теореме Ляпунова [4], закон ее распределения, приближенно можно считать нормальным. Нормальное распределение практически укладывается на отрезке  $\pm 3\sigma^t$  . Количественно характер распределения величины  $\mathbf{x}^{tr}$  можно оценить на основе расчета вероятности попадания вектора  $\boldsymbol{x}^{tr}$  в отрезок, равный  $2\Delta x^{tr}$  отклонения от вектора средних значений  $\overline{x}^{tr}$  . Эти вероятности рассчитываются по следующей формуле. Вероятность попадания на участок длины 2<sup>Δ</sup>x<sup>tr</sup>, симметричный относительно центра рассеяния, равна [4]:

$$P(\left|x^{tr}-\overline{x}^{tr}\right|<\Delta x^{tr})=2\Phi\left(\frac{\Delta x^{tr}}{\sigma}\right)-1.$$

Заменяя интеграл вероятностей логистической функцией, получим следующую формулу для расчета этой вероятности:

$$P(\left|x^{tr}-\overline{x}^{tr}\right|<\Delta x^{tr}) \cong 2\frac{\exp\left(\frac{\Delta x^{tr}}{\sigma}\right)}{\exp\left(\frac{\Delta x^{tr}}{\sigma}\right)+1}-1,$$

Результаты расчета по этой формуле для вероятности попадания  $\mathbf{x}^{tr}$  в отрезок 5% от  $\mathbf{x}^{tr}$  при разбросе исходных параметров (вектора  $\boldsymbol{y}$  и матрицы  $\boldsymbol{A}$  ) на отрезках 20% и 10% от детерминированных значений для равномерного и нормального распределений исходных параметров представлены в табл. 7-10.

Таблица 7

### ВЕРОЯТНОСТИ ПОПАДАНИЯ $x^{tt}$ B OTPE3OK 10% OT $\overline{x}^{tt}$ ; ОТРЕЗКИ ДА И ДУ 20% ОТ СРЕДНИХ ЗНАЧЕНИЙ (равномерное распределение)

| Увелич.<br>выпуска | 1        | 2        | 3        | 4        | 5        | 6        |
|--------------------|----------|----------|----------|----------|----------|----------|
| 0                  | 0,549058 | 0,565365 | 0,583582 | 0,670920 | 0,509686 | 0,473130 |
| 2                  | 0,574644 | 0,476957 | 0,604639 | 0,684716 | 0,515852 | 0,479315 |
| 4                  | 0,586199 | 0,461587 | 0,614357 | 0,691211 | 0,519149 | 0,482633 |
| 10                 | 0,625285 | 0,432478 | 0,650040 | 0,716901 | 0,539155 | 0,502971 |

Таблица 8

### ВЕРОЯТНОСТИ ПОПАДАНИЯ

### x'' B OTPE3OK 10% OT $\overline{x}''$ : ОТРЕЗКИ ДА И ДУ 20% ОТ СРЕДНИХ ЗНАЧЕНИЙ (нормальное распределение)

| Увелич.<br>выпуска | 1        | 2        | 3        | 4        | 5        | 6        |
|--------------------|----------|----------|----------|----------|----------|----------|
| 0                  | 0,789031 | 0,804013 | 0,820043 | 0,887140 | 0,750626 | 0,711681 |
| 2                  | 0,812269 | 0,715856 | 0,837681 | 0,896203 | 0,756887 | 0,718452 |
| 4                  | 0,822298 | 0,698797 | 0,845498 | 0,900330 | 0,760200 | 0,722051 |
| 10                 | 0,854112 | 0,665105 | 0,872480 | 0,915798 | 0,779796 | 0,743590 |

#### Таблица 9

### ВЕРОЯТНОСТИ ПОПАДАНИЯ

 $x^{tr}$  В ОТРЕЗОК 5% ОТ  $x^{tr}$ ; ОТРЕЗКИ  $\Delta A$  И  $\Delta y$  10% ОТ СРЕДНИХ ЗНАЧЕНИЙ (равномерное распределение)

| Уве-<br>лич.<br>вы-<br>пуска | 1        | 2        | 3        | 4        | 5        | 6        |
|------------------------------|----------|----------|----------|----------|----------|----------|
| 0                            | 0,843802 | 0,856905 | 0,870696 | 0,925544 | 0,809367 | 0,773256 |
| 2                            | 0,864038 | 0,777175 | 0,885584 | 0,932533 | 0,815064 | 0,779610 |
| 4                            | 0,872618 | 0,761075 | 0,892082 | 0,935679 | 0,818066 | 0,782974 |
| 10                           | 0,899171 | 0,728715 | 0,913991 | 0,947241 | 0,835644 | 0,802914 |

#### Таблица 10

### ВЕРОЯТНОСТИ ПОПАДАНИЯ

### x'' В ОТРЕЗОК 10% ОТ x''; ОТРЕЗКИ $\Delta A$ И $\Delta y$ 10% ОТ СРЕДНИХ ЗНАЧЕНИЙ (нормальное распределение)

| Увелич.<br>выпуска | 1        | 2        | 3        | 4        | 5        | 6        |
|--------------------|----------|----------|----------|----------|----------|----------|
| 0                  | 0,972574 | 0,976676 | 0,980641 | 0,992885 | 0,960250 | 0,944831 |
| 2                  | 0,978771 | 0,946625 | 0,984521 | 0,994036 | 0,962448 | 0,947728 |
| 4                  | 0,981165 | 0,939050 | 0,986084 | 0,994523 | 0,963581 | 0,949230 |
| 10                 | 0,987702 | 0,922251 | 0,990772 | 0,996151 | 0,969867 | 0,957673 |

Из табл. 7-10 видно, что вероятность попадания величи-

ны  $\mathbf{x}^{tr}$  в отрезок 10% от  $\mathbf{x}^{tr}$  при разбросе исходных параметров 20% от детерминированных значений при равномерном законе распределения этих параметров варьируется от 0,432 до 0,716 (для равномерного распределения исходных параметров) и от 0,665 до 0,915 (для нормального распределения исходных параметров). Последнее значение показывает довольно высокую вероятность близости математического ожидания величины х т к ее детерминированному значению  $\overline{\pmb{x}}^{tr}$  . При уменьшении разброса исходных параметров до 10% вероятность попадания величины  $x^{tr}$  в отрезок 10% от  $\overline{x}^{tr}$  становится практически достоверной как для равномерного, так и нормального распределения параметров. Из табл. 7-10 видно также, что для равномерного распределения исходных параметров эти вероятности меньше, чем для нормального распределения, что вполне соответствует указанному выше характеру этих распределений.

### Таблица 11

### НЕСБАЛАНСИРОВАННЫЕ ПРОИЗВОДСТВЕННЫЕ МОЩНОСТИ ПРЕДПРИЯТИЙ (частный случай 1)

 Увелич. выпуска
 1
 2
 3
 4
 5
 6

 0
 130 000
 109 025
 90 000
 110 000
 600 000
 600 000

 2
 130 000
 200 000
 90 000
 110 000
 600 000
 600 000

 4
 130 000
 330 000
 90 000
 110 000
 600 000
 600 000

 10
 130 000
 767 000
 90 000
 110 000
 600 000
 600 000

Далее приведены числовые примеры для оценки влияния неточности исходных данных в задаче определения максимального объема производства автомобилей автосборочным предприятием. В [2] выполнен расчет требуемых производственных мощностей предприятий и выпуска автомобилей при вариантах увеличения

их производства в 2, 4 и 10 раз. Рассматривались два частных случая решения задачи (1)-(5): частный случай 1 — несбалансированные производственные мощности; частный случай 2 — производственные мощности частично сбалансированы (для первых трех предприятий). Исходные данные представлены в табл. 11-14.

#### Таблица 12

### ЧАСТИЧНО СБАЛАНСИРОВАННЫЕ ПРОИЗВОДСТВЕННЫЕ МОЩНОСТИ ПРЕДРИЯТИЙ (частный случай 2)

Тыс. руб.

| Увелич.<br>выпуска | 1      | 2       | 3      | 4       | 5       | 6       |
|--------------------|--------|---------|--------|---------|---------|---------|
| 0                  | 53 300 | 109 025 | 65 200 | 110 000 | 600 000 | 600 000 |
| 2                  | 56 000 | 200 000 | 67 900 | 110 000 | 600 000 | 600 000 |
| 4                  | 60 000 | 330 000 | 71 650 | 110 000 | 600 000 | 600 000 |
| 10                 | 73 300 | 767 000 | 84 500 | 110 000 | 600 000 | 600 000 |

Максимальное детерминированное значение выпуска автомобилей — величина a — при этих мощностях предприятий определяется как минимальное значение из величин  $a_i$ , i=1,N, которые представлены в табл. 13-14.

#### Таблица 13

# ВЕЛИЧИНЫ $a_i$ , $i = \overline{1,6}$ ДЛЯ НЕСБАЛАНСИРОВАННЫХ ПРОИЗВОДСТВЕННЫХ МОЩНОСТЕЙ ПРЕДПРИЯТИЙ (частный случай 1)

Тыс. руб.

| Увелич.<br>выпуска | 1         | 2       | 3       | 4       | 5       | 6       |
|--------------------|-----------|---------|---------|---------|---------|---------|
| 0                  | 2 005 068 | 55 734  | 706 332 | 756 843 | 573 768 | 660 957 |
| 2                  | 2 005 068 | 125 574 | 706 332 | 756 843 | 573 768 | 660 957 |
| 4                  | 2 005 068 | 225 345 | 706 332 | 756 843 | 573 768 | 660 957 |
| 10                 | 2 005 068 | 560 731 | 706 332 | 756 843 | 573 768 | 660 957 |

Таблица 14

# ВЕЛИЧИНЫ $a_i$ , $i = \overline{1,6}$ ДЛЯ ЧАСТИЧНО СБАЛАНСИРОВАННЫХ ПРОИЗВОДСТВЕННЫХ МОЩНОСТЕЙ ПРЕДПРИЯТИЙ (частный случай 2)

Тыс. руб.

| Увелич.<br>выпуска | 1       | 2       | 3       | 4       | 5       | 6       |
|--------------------|---------|---------|---------|---------|---------|---------|
| 0                  | 55 597  | 55 753  | 55 533  | 756 843 | 573 768 | 660 957 |
| 2                  | 124 222 | 125 574 | 126 386 | 756 843 | 573 768 | 660 957 |
| 4                  | 225 890 | 225 345 | 224 793 | 756 843 | 573 768 | 660 957 |
| 10                 | 563 934 | 560 731 | 562 002 | 756 843 | 573 768 | 660 957 |

Проведены расчеты математического ожидания M[a] и дисперсии D[a] величины a для нескольких вариантов неточности (неопределенности) в задании исходных величин векторов p, y и матрицы A. Ниже показаны результаты расчетов для отрезков разброса параметров p, y и A в размере 20% и 10% от их детерминированных значений при равномерном и нормальном их распределении для двух частных случаев решения задачи (1)-(5). Такой отбор результатов из выполненных расчетов сделан на основе их анализа. Для разбросов свыше 20% от средних значений результаты становятся недостоверными.

Математическое ожидания M[a] и среднее квадратическое отклонение  $\sigma_a = \sqrt{D[a]}$  величины a вычис-

лялись по формулам (16)-(17) для частного случая 1 и по формулам (18)-(19) для частного случая 2 решения задачи (1)-(5). При вычислениях интеграла (20) в формуле для M[a] в частном случае (2) для принятых данных второе слагаемое практически равно 1, а третье 0. Поэтому формула для M[a] в частном случае (2) для используемых данных принимает вид этой же формулы для частного случая (1).

Вид распределений параметров p, y и A отражался в вычислении дисперсий этих величин, исходя из длины отрезков их неточности (неопределенности). Для равномерного распределения дисперсии равны квадрату длины отрезка, деленного на 12, а для нормального распределения квадрату длины отрезка, деленному на 36. Исходя из значений этих дисперсий, рассчитывались величины  $\sigma_1$  по формуле (15), которые входят в формулы для математического ожидания и дисперсии (16)-(19). Интегралы в этих формулах брались приближенно с помощью метода трапеций.

На основе этих данных рассчитывались вероятности попадания величины a в отрезок, равный  $2\Delta a$  отклонения от величины M[a], которые в обобщенном виде характеризуют влияние неточности исходных парамет-

ров на результаты решения задачи (1)-(5) — величину M[a]. Эти вероятности рассчитывались по ниже приведенной формуле. Результаты расчетов делятся на две группы. В первой группе в качестве исходных неточных параметров рассматривались только векторы p и y. Во второй группе в качестве исходных неточных параметров вместе с векторами p и p рассматривалась также матрица p . Результаты расчетов представлены в табл. 15-22.

$$P(|a-\overline{a}|<\Delta a) \cong 2 \frac{\exp\left(\frac{\Delta a}{\sigma a}\right)}{\exp\left(\frac{\Delta a}{\sigma a}\right)+1}-1$$

$$\frac{\sigma}{\sigma}_a = \frac{\sigma_a}{1.7}$$

Таблица 15

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ р и у

|         | Равномерное распределение (5% разброс) |                  |                          |                               |         |                          |                               |  |  |  |  |
|---------|----------------------------------------|------------------|--------------------------|-------------------------------|---------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                        | Частный случай 1 |                          |                               |         | Частный случай 2         |                               |  |  |  |  |
| выпуска | $\sigma_1$                             | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]    | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 720                                    | 58 541           | 1 724                    | 0,690591                      | 58 541  | 6 529                    | 0,220049                      |  |  |  |  |
| 2       | 1 309                                  | 131 853          | 3 846                    | 0,694777                      | 13 1853 | 13 707                   | 0,235960                      |  |  |  |  |
| 4       | 2 154                                  | 236 613          | 6 825                    | 0,699708                      | 236 613 | 25 053                   | 0,231819                      |  |  |  |  |
| 10      | 4 999                                  | 588 768          | 17 298                   | 0,691550                      | 588 768 | 56 234                   | 0,255931                      |  |  |  |  |

Таблица 16

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ p и y

|         | Нормальное распределение (5% разброс) |                  |                                       |                               |                  |                          |                               |  |  |  |  |
|---------|---------------------------------------|------------------|---------------------------------------|-------------------------------|------------------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                       | Частный случай 1 |                                       |                               | Частный случай 2 |                          |                               |  |  |  |  |
| выпуска | $\sigma_{\scriptscriptstyle 1}$       | M[a]             | $\overset{-}{\sigma}_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 416                                   | 58 541           | 1 680                                 | 0,701846                      | 58 541           | 5 916                    | 0,242447                      |  |  |  |  |
| 2       | 756                                   | 131 853          | 3 757                                 | 0,705088                      | 131 853          | 11 903                   | 0,270053                      |  |  |  |  |
| 4       | 1 244                                 | 236 613          | 6 667                                 | 0,710016                      | 236 613          | 22 229                   | 0,260002                      |  |  |  |  |
| 10      | 2 886                                 | 588768           | 16976                                 | 0,699865                      | 588768           | 46290                    | 0,307674                      |  |  |  |  |

Таблица 17

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

риу

|         | Равномерное распределение (10% разброс) |                  |                          |                               |                  |                          |                               |  |  |  |  |
|---------|-----------------------------------------|------------------|--------------------------|-------------------------------|------------------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                         | Частный случай 1 |                          |                               | Частный случай 2 |                          |                               |  |  |  |  |
| выпуска | $\sigma_{\scriptscriptstyle 1}$         | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 1 442                                   | 61 328           | 3 453                    | 0,416958                      | 61 328           | 9 885                    | 0,153880                      |  |  |  |  |
| 2       | 2 618                                   | 138 131          | 7 703                    | 0,420484                      | 138 131          | 21 638                   | 0,158252                      |  |  |  |  |
| 4       | 4 308                                   | 247 880          | 13 802                   | 0,421076                      | 247 880          | 37 970                   | 0,161772                      |  |  |  |  |
| 10      | 9 999                                   | 616 804          | 34 074                   | 0,423993                      | 616 804          | 90 483                   | 0,168789                      |  |  |  |  |

Таблица 18

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ p и y

|         | Нормальное распределение (10% разброс) |                  |                          |                               |         |                          |                               |  |  |  |  |
|---------|----------------------------------------|------------------|--------------------------|-------------------------------|---------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                        | Частный случай 1 |                          |                               |         | Частный случай 2         |                               |  |  |  |  |
| выпуска | $\sigma_1$                             | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]    | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 833                                    | 61 328           | 3 368                    | 0,426152                      | 61 328  | 8 976                    | 0,169162                      |  |  |  |  |
| 2       | 1 512                                  | 138 131          | 7 528                    | 0,429020                      | 138 131 | 19 426                   | 0,175913                      |  |  |  |  |
| 4       | 2 487                                  | 247 880          | 13 510                   | 0,429028                      | 247 880 | 33 785                   | 0,181395                      |  |  |  |  |
| 10      | 5 773                                  | 616 804          | 33 364                   | 0,431861                      | 616 804 | 78 613                   | 0,193674                      |  |  |  |  |

Таблица 19

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

р, у и А

|         | Равномерное распределение (5% разброс) |                  |                                       |                               |                  |                          |                               |  |  |  |  |
|---------|----------------------------------------|------------------|---------------------------------------|-------------------------------|------------------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                        | Частный случай 1 |                                       |                               | Частный случай 2 |                          |                               |  |  |  |  |
| выпуска | $\sigma_1$                             | M[a]             | $\overset{-}{\sigma}_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]             | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 724                                    | 58 541           | 1 724                                 | 0,690477                      | 58 541           | 6 532                    | 0,220382                      |  |  |  |  |
| 2       | 1 312                                  | 131 853          | 3 846                                 | 0,694723                      | 131 853          | 13 712                   | 0,235866                      |  |  |  |  |
| 4       | 2 156                                  | 236 613          | 6 826                                 | 0,699667                      | 236 613          | 25 059                   | 0,231768                      |  |  |  |  |
| 10      | 5 002                                  | 588 768          | 17 298                                | 0,691538                      | 588 768          | 56 243                   | 0,255894                      |  |  |  |  |

Таблица 20

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

р, у и А

|         | Нормальное распределение (5% разброс) |                  |                                     |                               |         |                          |                               |  |  |  |  |
|---------|---------------------------------------|------------------|-------------------------------------|-------------------------------|---------|--------------------------|-------------------------------|--|--|--|--|
| Увелич. |                                       | Частный случай 1 |                                     |                               |         | Частный случай 2         |                               |  |  |  |  |
| выпуска | $\sigma_1$                            | M[a]             | $\overline{\sigma}_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]    | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0       | 417                                   | 58 541           | 1 681                               | 0,701792                      | 58 541  | 5 919                    | 0,242343                      |  |  |  |  |
| 2       | 757                                   | 131 853          | 3 757                               | 0,705067                      | 131 853 | 11 907                   | 0,269968                      |  |  |  |  |
| 4       | 1 244                                 | 236 613          | 6 668                               | 0,710001                      | 236 613 | 22 232                   | 0,259962                      |  |  |  |  |
| 10      | 2 887                                 | 588 768          | 16 976                              | 0,699865                      | 588 768 | 46 296                   | 0,307640                      |  |  |  |  |

Таблица 21

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

р, у и А

|                    | Равномерное распределение (10% разброс) |         |                                       |                               |         |                          |                               |  |  |  |  |
|--------------------|-----------------------------------------|---------|---------------------------------------|-------------------------------|---------|--------------------------|-------------------------------|--|--|--|--|
| Увелич.            |                                         |         | Частный с                             | лучай 1                       |         | Частный случай 2         |                               |  |  |  |  |
| выпуска $\sigma_1$ | $\sigma_1$                              | M[a]    | $\overset{-}{\sigma}_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]    | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |  |
| 0                  | 1 452                                   | 61 330  | 3 455                                 | 0,416776                      | 61 330  | 9 894                    | 0,153731                      |  |  |  |  |
| 2                  | 2 628                                   | 13 8133 | 7 705                                 | 0,420389                      | 13 8131 | 21 652                   | 0,158150                      |  |  |  |  |
| 4                  | 4 318                                   | 247 881 | 13 804                                | 0,421021                      | 247 880 | 37 988                   | 0,161701                      |  |  |  |  |
| 10                 | 10 009                                  | 616 806 | 34 076                                | 0,423971                      | 616 806 | 90 505                   | 0,168750                      |  |  |  |  |

Таблица 22

### СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

р, у и А

| Нормальное распределение (10% разброс) |            |         |                                       |                               |         |                          |                               |  |  |  |
|----------------------------------------|------------|---------|---------------------------------------|-------------------------------|---------|--------------------------|-------------------------------|--|--|--|
| Увелич.                                |            |         | Частный сл                            | пучай 1                       |         | Частный с                | случай 2                      |  |  |  |
| выпуска                                | $\sigma_1$ | M[a]    | $\overline{\sigma}_{a} = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> | M[a]    | $\sigma_a = \sqrt{D[a]}$ | <i>P</i> в 10% от <i>M[a]</i> |  |  |  |
| 0                                      | 8 36       | 61 329  | 3 369                                 | 0,426067                      | 61 329  | 8 984                    | 0,169017                      |  |  |  |
| 2                                      | 1 515      | 138 863 | 7 529                                 | 0,428981                      | 138 131 | 19 436                   | 0,175827                      |  |  |  |
| 4                                      | 2 490      | 247 880 | 13 511                                | 0,429007                      | 247 880 | 33 796                   | 0,181339                      |  |  |  |
| 10                                     | 5 776      | 616 805 | 33 364                                | 0,431854                      | 616 805 | 78 626                   | 0,193644                      |  |  |  |

При вычислении результатов расчетов в первой группе установлено, что в интеграле (19) второе и третье слагаемое практически равны нулю. Таким образом, математическое ожидание величины М[а] в частных случаях 1 и 2 для принятых исходных данных практически тождественны.

При вычислении результатов расчетов во второй группе установлено, что математическом ожидании

(22) аргумент 
$$\frac{{\color{red} a_1^+ - \overline{a_1}}}{{\color{red} \sigma_1}}$$
 много больше 1, а аргумент

$$\frac{a_1^- - a_1^-}{\sigma_1}$$
 много меньше 0. Поэтому формула (22) преобразуется к виду:

 $M[a] = a_1^+ + \frac{\Delta a_1}{2}$ ,

что совпадает с математическим ожиданием в первой группе. Таким образом добавление неточности в матрице 
$$\boldsymbol{A}$$
 практически не изменяет значение математического ожидания  $\boldsymbol{M[a]}$ . Из табл. 15-22 следует, что то же самое можно сказать о дисперсии  $\boldsymbol{D[a]}$ .

Анализ результатов расчетов в табл. 15-22 также позволяет сделать следующие выводы. Математическое ожидание М[а] по сравнению с детерминированным значением завышается на величину интервала разброса значений а. Это означает, что в случае неточности исходных параметров решение задачи (1)-(5) будет завышенным на величину, которую можно рассчитать исходя из предполагаемых или известных неточностей исходных параметров. Максимально допустимая неточность исходных параметров p и y может быть не более 10% от их детерминированных значений. Неточность значений матрицы А в пределах неточности параметров р и у практически не влияет на математическое ожидание и дисперсию величины а. Из этого следует, что критическими параметрами в отношении неточности их задания являются векторы р и у . Критической также является сбалансированность производственных мощностей предприятий. Чем меньше их сбалансированность, тем меньше влияние на неточность результатов решения задачи (1)-(5). Наиболее благоприятным является случай, когда производственные мощности обеспечивающих предприятий по сравнению с автосборочным предприятием имеют значительные резервы. При использовании нормального распределения исходных параметров по сравнению равномерным неточность результатов решения задачи (1)-(5), как и следовало ожидать, уменьшается, однако не так сильно, как можно было бы предположить.

### Романов Борис Александрович

### Литература

- 1. Романов Б.А. Математическая модель реализации производственного проекта группой предприятий. М.: Аудит и финансовый анализ № 2, 2007.
- Романов Б.А. Анализ инвестиционного проекта по производству автомобилей. Аудит и финансовый анализ № 4,
- 3. Ершов Э.Б. Неопределенность информации и устойчивость решения статической модели планового межотраслевого баланса. Сб. Статей НИЭИ Госплана СССР.- М.: Экономика, 1967.

- Вентцель Е.С. Теория вероятностей. М.: Наука, 1969.
- 5. Вентцель Е.С., Овчаров Л.А. Теория вероятностей. - М.: Наука, 1970.
- Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 1-3. - М.: Физматгиз, 1958.
- Тюрин Ю.Н. Непараметрические методы статистики. М., Знание, 1978.

#### ОТЗЫВ

В статье рассматриваются актуальные вопросы влияния неточности исходных параметров в задаче анализа производственного инвестиционного проекта на выходные показатели, такие как размеры потребных производственных мощностей и максимальный выпуск продукции при различных вариантах задания функций распределения неточности исходных параметров. Приводятся расчеты математических ожиданий и дисперсии потребных производственных мощностей предприятий для реализации заданного проекта и максимальных объемов производства автомобилей для различных вариантов увеличения производственных мощностей предприятий. Работа имеет важное научное и практическое значение и может использоваться для решения подобных задач при анализе производственных инвестиционных проектов.

Полковский Л.М., д.э.н., ректор Московского бухгалтерского инcmumvma

### 8.5. REGISTRATION OF AN **INACCURACY OF PARAMETRES** IN THE TASK OF THE ANALYSIS OF A CAPITAL INVESTMENT PROJECT ON PRODUCTION OF CARS

B.A. Romanov, Candidate of Science (Technical), Managing Chair of Mathematical Disciplines of the Moscow Accounting Institute

In paper the registration of an inaccuracy of parametres in the task of the analysis of a capital investment project on magnification of production of cars is fulfilled. Inaccuracies of parametres it is considered as the aleatory variables meted on set segments. As allocation laws uniform and normal allocations are used. For the purpose of detection of influence of separate parametres on outcomes of accounts are considered along with special cases of an inaccuracy of separate parametres as well the common case of an inaccuracy of all parametres. Expectations and variances of output metrics of a capital investment project. such as потребные capacities of all firms participating in the project, the maximum issue of cars for several variants of magnification of capacities of car assembly firm and the adjacent firms having insufficient capacities with two aspects of allocation of an inaccuracy of initial parametres pay off. Besides, accounts are conducted for two variants of a relation of capacities of the firms participating in implementation of a capital investment project - not balanced capacities and partially balanced. The analysis of the received outcomes is made also.